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A model of the earth’s liquid core is assumed in which the underlying magnetic field 
and velocity are zonal and axially symmetric. Alfvhn waves that vary as ei(kC-ut) are 
considered, where q5 is the angle of longitude. Buoyancy and Coriolis forces SZ x U are 
included. 

For a wide class of basic states and regions of flow, it is shown that roughly as many 
of the waves with a given k 3 2 propagate eastwards as propagate westwards. All these 
waves are neutrally stable. The class of basic states is restricted by certain inequalities 
involving their velocity, magnetic field and entropy gradient. 

It is observed that the known equivalence (Malkus 1967) between Alfv6n waves 
with frequencies CT < $2 and inertial waves with frequencies cr, which are O ( 8 )  still 
holds when buoyancy forces are present. The equivalence requires ui to be real. If a, is 
pure imaginary, as is possible (though perhaps uncommon) in an unstably stratified 
medium, then the corresponding Alfv6n wave is not neutrally stable and travels 
westwards. 

1. Introduction 
The gross features of the magnetic field a t  the earth’s surface drift slowly westward. 
The speeds of the various components of a representation of the magnetic potential 

in spherical harmonics differ. In  the decade 1955-65, the equatorial dipole had a speed 
of about 0.06” longitude per year, other of the lower-order components being faster 
by a factor of up to about five (Hide 1966). The axial dipole also varies but, except 
possibly during its sporadic reversals of direction, does so on a much longer scale of time. 

Following the belief that the earth’s magnetic field originates in an inner core com- 
posed mainly of iron, Braginskii (1967), Hide (1966) and others have suggested that 
the drift might represent hydromagnetic waves superimposed on the mean (relatively 
steady) magnetic field. To propagate Alfv6n waves with phase speeds of the order of 
magnitude of the observed drift rates, the zonal field needs a strength of about 100 
Oersted. For a field of this strength, the Coriolis forces are of the same order of 
magnitude as the changes in the Lorentz forces due to the waves. Thus the earth’s 
rotation is brought into the dynamics, and east and west are dynamically distinguished. 
A zonal field B, of 100 Oersted would be roughly 20 times as big as the magnetic field 
B, in the mantle at the core boundary. However this ratio I B,I / I B, I can be regarded 
(e.g. Hide 1966) as a measure of the magnetic Reynolds number R, of the geodynamo, 
and a figure of 20 for R, would not be unacceptable (Gubbins 1974; Acheson & Hide 
1973). Predictions of the direction of (zonal) propagation of the Alfvhn waves vary, 
depending on the model proposed. 
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The simpler models omit buoyancy and acceleration relative to the earth and pre- 
suppose a basic state in which the fluid is stationary and the magnetic field is zonal 
and axially symmetric, i.e. B, = Bo(r, z )  6,  where (r, 9, z )  are cylindrical co-ordinates 
with origin at the earth’s centre and 2 directed northwards. Waves are sought that 
vary as e*(k+-nt). For B, = constant x r,  Malkus found (shelloidal) waves that have no 
radial components of velocity or magnetic field. These modes can occur in a sphere or 
spherical annulus (and with spherical stratification) and they all travel eastwards. 
For a thin spherical annulus, all the waves determined from the appropriate approxi- 
mate equations also travel eastwards, both for B, cc r and Bo = constant (Stewartson 
1967). Stewartson argued that further, when k: > 2 and B, = constant, each of these 
modes retains its easterly direction of propagation when the annulus widens and 
becomes relatively thick. These modes are special, in that they either have zero or small 
radial velocities or are generated from such modes. For B, oc r ,  Malkus (1967) concluded 
that, apart from the shelloidal modes, the modes in a sphere exhibit no preferred 
direction of drift, one class of modes drifting to the east and another class drifting to tho 
west. All the modes alluded to so far are neutrally stable (Im r = 0). Acheson con- 
sidered waves in a cylindrical annulus rl < r < r, that vary as eak++lz-d) and showed 
that, for an axially symmetric basic state, the unstable waves propagate westwards 
(Acheson 1972, 1973). The basic state may be (cylindrically) stratified and include an 
axial and a zonal component of velocity. Whether or not a similar conclusion holds 
for unstable waves in other geometries is an unresolved question (Acheson & Hide 
1973). 

In the present note, Malkus’s conclusion concerning the directions of drift in a sphere 
is generalized. The basic state is again assumed to be axially symmetric and to have 
a zonal magnetic field B, = B,+, but B, is a general function of r and z and a zonal 
velocity and buoyancy forces are included. The boundary of the fluid is again required 
to be rigid and axisymmetric. Otherwise its shape is arbitrary. The basic state is 
restricted by certain inequalities involving its velocity, magnetic field and entropy 
gradient. These inequalities involve the wavenumber k.  For a given k ,  a basic state 
that satisfies these inequalities will be referred to as an admissible state. For admissible 
states, it is found that almost as many waves, with a given wavenumber, travel 
eastwards as travel westwards. All the waves in the admissible configurations are 
neutrally stable. 

In  passing, an extension is noted of the known equivalence (Malkus 1967) between 
Alfvdn waves in a rotating magnetic fluid with B, cc rt$ and inertial waves in a rotating 
non-magnetic fluid. This equivalence requires the phase speed of the Alfv6n waves to 
be much less than the angular velocity A2 of the fluid, so that their inertial acceleration 
can be neglected. The low frequency of the Alfvh wave then corresponds to a frequency 
O( a) of the inertial wave. It is observed that this equivalence still holds when stratifica- 
tion is included. A possible direct connexion is thereby opened up between the 
atmosphere and the liquid core. 
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2. Formulation 
The relevant magnetohydrodynamic equations may be written as 

dU 
-+2sLxU = 
dt 

dB/dt = B . VU, dSfdt = 0, ( 2 4 ,  (2.3) 

dp/dt + p  divU = 0 = div B ,  (2.4) 

where p ,  p, 8, U, B, ,u and Q denote respectively pressure, density, entropy per unit 
mass, velocity relative to the earth, magnetic induction, magnetic permeability and 
the potential due to both gravity and centripetal acceleration; g = VQ is taken 
positive outwards from the earth’s centre, and the earth’s angular velocity sL is 
regarded as constant. Buoyancy will be ascribed solely to entropy gradients, but the 
ensuing analysis still applies, with little more than a change of notation, if buoyancy 
is caused also by concentration gradients. 

The Coriolis acceleration must be retained if east and west are to be dynamically 
distinguished. So the time scale for changes in (absolute) velocity in (2.1) is effectively 
1 day, in contrast to the time scale t* of lo2 -lo3 years characteristic of the present rate 
of westward drift. The time scale for changes in B and S will be taken to be t*. The 
magnetic Reynolds number and PBclet number for the liquid core, based on a time of 
lo2 years, an outer radius ( r 2 + 9 ) *  = a of 3 x lOScm, a magnetic diffusivity of 
3 x lo4 cm2 s-l (Roberts & Soward 1972) and a thermal diffusivity of cmz s-l 
(Stacey 1969), are lo4 and 2 x 1O1O respectively and are large enough to justify neglect- 
ing magnetic and thermal diffusion (other than in boundary layers or other such 
singular layers). A kinematic viscosity of about 10l2 cm2 s-l would be needed to make 
the viscous forces comparable with the Coriolis force. Estimates of v vary between 
wide limits, namely the value om2 s-1 for molten iron a t  ordinary pressures and 
the value lo9 cm2 s-l, above which compressional waves would attenuate more than 
is observed (cf. Hide 1971). However, the upper limit seems sufficiently far below 10l2 
to permit (a similar) neglect of viscous diffusion. 

The basic state is taken to be steady, to be symmetric about the axis of rotation and 
to have 

where co < 0. The suffix zero will be taken to denote the value of a variable in this state. 
The actual velocity and magnetic field of the geodynamo are not known. Arguments 
suggesting that the magnetic field and velocity are approximately zonal have been 
advanced by Roberts & Soward (1972) and Hide (1966). The argument relating to Bo 
requires the magnetic Reynolds number of the geodynamo (R, = aU/h, where U is 
a speed typical of the dynamo) to be large. It has sometimes (Malkus 1967; Acheson 
1972) been assumed that Uo = 0. In  the context of the Alfvh-wave hypothesis for 
the westward drift of the earth’s magnetic field, making this assumption means 
presupposing (a )  that the observed drift speed represents a phase speed rather than 
a particle speed and (b )  that the geodynamo is sustained with a magnetic Reynolds 
number much less than the values 102--103 associated with the drift speed. The simpler 
assumption that U,, = 0 thus requires 1 < R, < 102-103. The inclusion of a zonal flow 

(2.5) uo = r b ( r ,  2) +, Bo = rbo(r, 4 4% 
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(U, = TC+) imposes little extra complication and removes the need for the upper 
limit R, -g 102-103. 

The equilibrium of the basic state requires that 

where ho = b: - 2PoPo QCO. (2.7) 

The acceleration (tr is much less than QCor and has been omitted. From here on, 
we shall also neglect the variation in p. The Lorentz forces hor/p0 in question are 
O(Qmp,) ,  as will be seen presently [equation (2.19)], and for t* = 102y me about 
1O-*p0g. So they cause only a minute departure from horizontal stratification. Accord- 
ingly, the pressure, density and entropy are to a close approximation functions 
Po( a,), Po( Q0) and go( @,), say, of the potential 0,. The small variation in po - Po around 
an equipotential surface is given by 

Small disturbances of the basic state are governed, to first order, by 

2poQ x U, = -VII1+P~l(BO.VB1+B1.VBO)+aOTlg, (2.9) 

aB,/at = B1. VUo - U, . VB, + Bo . VU1- U.  VB,, (2.10) 

%",/at = - (T/cP),  U, . VS, ( = - U, . Vr,, say), (2.11) 

div U, = 0 = div B,, (2.12) 

where II, = p1 +po al +pilBo. B,, T is the temperature, cp  is the specific heat per 
unit mass a t  constant pressure, - ao/po is the coefficient of thermal expansion and the 
suffixes 1 connote the changes in value from those in the basic state. The Boussinesq 
approximation has been used here, i.e. the density has been taken to be uniform in the 
equations of motion (2.9) and (2.12) except in calculat,ing the buoyancy force, and the 
respective changes p1 and 8, in density and entropy have been taken to be independent 
of compression. The terms omitted from each equation on this account are smaller 
than the terms retained at worst by the factor of about + that represents the propor- 
tional change in density across the liquid core. The ratio (T/cp),  in (2.11) is assumed 
to be uniform also (though allowing for its variation would involve little change in 
what follows). The accelerat'ion dU,/dt, which has been omitted from (2.9), is of the 
order of 10-5Q x U for slow waves with periods t* N lo2 years (and for g = O( l/t*)) and 
is insignificant. (The accelerations r x dQ/dt due to the 25800 year precession and to 
the Chandler wobble, which were omitted from (2.1), are of the order of 
times (u/t*L<) 51 x U respectively.) With the acceleration dUl/dt absent, the equations 
of motion (2.9)-(2.12) are invariant under transformation to any frame with a constant 
angular velocity 51, < Q. 

Since the Coriolis force poG? x U, is exceedingly small, a minute non-uniformity in the 
entropy So of the basic state suffices to produce buoyancy forces of comparable magni- 
tude. Variations in ro which are O(uQpo/aot*g) suffice and it will be assumedfrom hereon 
that the variations are of this order. For the typical values a,/po = - 4 x 10-6 "C-l and 
t* = lo2 years, these variations amount to about "C. The corresponding departures 

and 
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in the density po from its adiabatic value are about 1O-8p0. The small change in entropy 
So - go round an equipotential corresponding to the change po -Po  may be determined, 
neglecting compressibility, from (2.8) ,whence 

g x v 7 ,  = ( $ ) , g x v ( s , - s , )  = - ( $ ) , r 2  4. (2.13) 

Assuming, as we have, that the Coriolis, magnetic and buoyancy forces in (2.9) are of 
comparable magnitude, we may infert that g x V T ,  and (slap), ah,/az+ are also of 
comparable magnitude. The small deviation of @ from spherical symmetry can there- 
fore be ignored in (2.13) [and (2.9)] with little additional error, and from here on we 
put 8 = sin6?+ cos62, where 6 is the colatitude. 

After introducing the sinusoidally varying forms 

(U, ,  B,, T,, II,) = (u,, b,, t , ,  n,) ei(k+wt), k 2 0,  

into the magnetic and thermal equations (2.10) and (2.11), we get 

(kc, - (T) b, = kbu, + ir&u,. Vb ,  - b, . Vc,) ,  (kc, - (T) t ,  = iu, . V7,. 

Following Frieman & Rotenberg (1960), we define a displacement q by 

q = ((T - kc,)-, u, + ir(a - k[,)-2 +ul . V [ , .  

divq = 0 The displacement q satisfies 

and leads to a useful simplification of (2.15). In  terms of q, 

u1 = (a - k~,) q - ir+q.  Vc,,  

b, = - kb,q - i r 4 q .  Vb,, 

t, = - iq . v7,. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18a) 

(2.18 b)  

( 2 . 1 8 ~ )  

Substituting (2.14) into the dynamic equation (2.9), and then using the relations 
(2.18) for u,, b, and t,, we find that 

(2.19) k2biq - i(2w + k(& + h,)) 2 x q = i,u,V*n, + rq . Vh, -@q. v70, 
where w = ,uopoaQ, ,8 = ,uoaog, V*n, = n,,?+ikr-17r1$+7r,,2. (2.20) 

q . u = O =  b,.u on S. (2.21) 

We assume that u . u = 0 at the boundary S of the fluid, where v is normal to S, and 
deduce from (2.18a, b)  that 

3. General observations 
Forb, = constant and c, = 7, = 0, Malkus (1967) found a direct equivalence between 

slow Alfv6n waves with frequencies < Q and inertial oscillations in a homogeneous 
non-magnetic fluid. We note here that this equivalence can be extended to include 
stratification. 

For waves with frequencies O(Q) ,  the acceleration dU,/dt should be restored to (2.9). 
The equation for u1 in planetary waves in a non-magnetic, rigidly rotating, stratified 
fluid follows on putting b, = 0 and c, = 0. Thus 

- p , ( ~ ~ u , - 2 i p , ( ~ ~  x u ,  = i ( ~ V * n , - a , g u , . V ~ ~ .  (3.1) 

t Independently of (2.13). 
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It is implicit here that the Boussinesq approximation is being applied also to the non- 
magnetic waves. That is, po is being regarded as constant in the equations of motion for 
the non-magnetic waves save in the buoyancy term. Also the non-magnetic waves are 
being taken to have the same continuity equation (div u1 = 0) and the same boundary 
condition (ul . v  = 0 on 8) as the Alfvkn waves; and the ratio (T/cp),  in (2 .11)  is again 
being taken to be uniform. Following Malkus, we compare these waves with Alfv6n 
waves for a basic state in which b, = constant and go = 0 (so that I t ,  = bt and 
YJ = a-lul). For a given region 7, (3 .1 )  yields the same eigenmodes u1 for the non- 
magnetic waves as (2 .19)  yields for the Alfvkn waves just specified provided that 

(Q/a), = - (W -I- kb;)/k2b& ( 3 . 2 a )  

( ~ d ~ o a ~ ) ~ V 7 0 ~  = - (poaog/k2b3 V70, (3 .2b )  

where the suffixes p denote quantities pertaining to the non-magnetic waves. The 
Alfvkn waves with frequencies 

= - k b ~ ( k l 2 , ~ ~ ~ + l ) / , ~ O ~ o Q  < (3 .3 )  

are thus equivalent to the non-magnetic waves with frequencies O( Q) in V .  
If aog/(a0g), is taken to be constant, the proviso (3 .2b )  requires a linear relation 

between 70 and 70p but leaves the distribution of 7, arbitrary. If a,g/(a,g), is taken to 
vary and to have a spherically symmetrical distribution, then (3 .2b )  requires the 
distributions of 7, and 70p to be spherically symmetric. The condition (3 .2b)  also 
requires a; to be real and non-zero. When ap is real, a is real and for the slower non- 
magnetic waves with lap\ < kQP, apa is negative; i.e. both waves are neutrally stable 
and if one propagates eastwards the other propagates westwards. If cp (+ 0) is pure 
imaginary, then Im a Im ap > 0, i.e. both waves are unstable (or stable) and the 
Alfv6n wave propagates westwards. 

The Alfv6n waves on a torus that Braginskii (1967) has considered provide an 
example of Alfvkn waves which have equivalent non-magnetic waves. Braginskii 
takes the torus to have a rectangular cross-section (r = so, so+xl, x = O,zl, where 
so, x1 and z1 are constants) and to be thin (xl, z1 < so) and takes g and V70 to be uniform 
and parallel to 6. The corresponding non-magnetic waves have pure imaginary values 
of ap for large enough, destabilizing values of v70p. So imaginary values of ap can 
occur. But they may be rare. 

It is of some relevance to ask whether the general equations for q are hyperbolic. 
For this purpose, we write (2 .19)  in the form 

Alu + iBv + CW = ipOnlr, ( 3 . 4 a )  

-iBu+A,v = - -pOnl/r ,  (3 .4b)  

CU+A,W = ( 3 . 4 4  

where (u, v, w )  are the polar components of the displacement q and 

A, = k2bt - rho,. + / 3 ~ , ~  sin 8, A, = k2b& A ,  = k2b; + cos 8, 
B = ZW + k(b; + I t , ) ,  C = /37,,,, cos 8. 



Westward drift of the earth’s magnetic $eld 396 

The symmetric occurrence of C in (3.4) is a consequence of using (2.13). From (3.4)’ 
we find that 

(3.6) 

(3-7) 

I u = ip0[A&3nir+ kA3Rr-1nl-A,Cn,,]/A, 

v = -po[A3Bn1,.+ k(AlA3-C2)r-1n1-BCnle]/A, 

w = -ipo[A2Cnl,+kBCr-1n,+ (B2-AlA2)nl,]/A, 

where A = A1 A ,  A3 - B2A3 - C’A,. 

Substituting these expressions into the reduced continuity equation (2.17) yields an 
equation for nl whose highest derivatives occur in the combination 

A3n1rr - 2 A Z  cnlTZ + - B2)  nlzz* 

When the waves are neutrally stable, all the coefficients of these derivatives are real 
and the equation for n1 is locally hyperbolic wherever 

b, + 0, A < 0. (3.8) 

General conditions under which this inequality is sat,isfied will be given below. 

4. Frequency restrictions for k i 0 

In order to obtain restrictions on the frequency w for k =+ 0, we multiply (3.4a, b, c )  
by the respective components (U, V ,  W) of the complex conjugate of the displacement r), 

integrate over the volume V and use (2.17) and (2.21). In  this way, we find 

[A, lu12 + A ,  1.1 2 + A3j w 1 + 2B Irn u3 + 2C Re uG] d~ = 0. (4.1) sy 
The real part of the integrand is greater than or equal to 

where BE = uR+k(bg+ho), uR = Rew, (4.3) 

and AR is defined as in (3.7) but with BR in place of B.  Since A ,  ( = k2bg) is non-negative, 

(4.4) 
we conclude that if 

b,*O, A 3 2 0  

everywhere in Y (exc k P  t possibly at a set of points whose aggregate volume is zero) 
then somewhere in Y (A,  9 0,  A ,  i 0 and) 

A,  < 0. (4.5) 

If conditions (4.4) are met and, in addition, 

(b; + h,), c bg(Al - C2Ay1) ( = D, say) 

everywhere in V ,  it follows from (3.5) and (4.5) that 

21wR/kl > D’-Ibg+hol > 0 (4.7) 

at the points in V where (4.5) holds. The first of these consequences of (4.1) [inequality 
(4.5)] implies that modes which are neutrally stable are governed by equations which 
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are hyperbolic over part, a t  least, of V .  The second [inequality (4.7)] places lower 
bounds on the zonal propagation speed cR = Re u / k .  

The basic states that comply with the prerequisites (4.4) and (4.6) are more easily 
recognized by restating these conditions in terms of the original variables b,, c, and 7,. 

From (2.13) and ( 3 4 ,  we see that (4.4) requires that 

b, + 0, ( A ,  = ) k2bg+/97Oz~~sB 2 0 

and (4.6) requires that 

(4.8u, b )  

k2bg > bc2(bg + h,)2 + rh, -p7, sin 8 + (p7, cos 8)2 Agl 

= bc2(b%+ h,)2 +rh,-/9~,sinB(k~bg+zh,,)A;~. (4.9) 

Condition (4 .8b )  is satisfied by all basic states that have a stabilizing axial entropy 
gradient ( ~ 7 , ~  > 0 for z + 0). Factors favourable to condition (4.9) being satisfied are 
as follows. 

(i) A relatively small local difference between the zonal particle speed uco and the 
Alfven speed a(,up, bg. 

(ii) A large negative (or small positive) radial gradient of (h, = ) b,2 - 2ppO SZ[, 
relative to b $ - .  

(iii) A large positive (stabilizing) radial entropy gradient To7 relative to bi/r for 
a given value of E = (k2b; + zhoz)/(k2b$ + /970z cos 8)  > 0,  or a large negative (destabiliz- 
ing) gradient 7, relative to b%/r for a given value of E < 0. 

The average magnitudes of 1 + hobg2, h,/bi, hoz/bi and 7,/b2 can be vaned inde- 
pendently. So the factors (i)-(iii) are essentially independent. If l,upo!2cob,2- 11 x 1, 
h,  < 0 and 7,E > 0,  then condition (4.9) is satisfied for all k 2 1. (A horizontally 
stratified basic state (g x VT, = 0)  occurs in conjunction with a zero axial gradient of 
h,, as is shown by (2.13). In  this case, we have E > 0 whenever (4.8) applies.) Both of 
the conditions (4.8) and (4.9) are generally satisfied when b, $; 0 anywhere in V and 

(iv) k is large enough, or 
(v) k > 1 and b, is large enough, for fixed h,, or 
(vi) k > 2 and b, is large enough, for fixed c,. 
The factors (ii)-(vi), which are strongly conducive to the condition (4.9) being 

satisfied, produce large values of D / ( b i  + h,), as may be seen by reverting to t,he ante- 
cedent (4.6) of (4.9), and hence produce large values of the lower bound to 
Iw,/k(b%+h,)l implied by (4.7). Thus these factors lead to Alfv6n waves with high 
angular speeds cR, relative to a typical magnitude of 1 (,up, a)-1 b% - c,I. 

Directions can be assigned to the zonal velocities by appealing to a continuity 
argument that was used in a similar context by Stewartson (1967). We restrict atten- 
tion to basic states that comply, for a given k ,  with conditions (4.8) and (4.9), and refer 
to them as admissible states. The inequality (4.7) shows that uR + 0. Hence the 
propagation speed c12 of a particular mode remains of one sign when the admissible 
basic states and the boundary of V change continuously, provided that the mode and 
its wave speed c, also change continuously. Thus the mode propagates in the same 
zonal direction in the derived configuration as it does in the original configuration. 
Moreover, unless some of the modes fail to deform continuously, a complete set of 
modes with given k in one admissible configuration deforms to a complete set in any 
ot,her admissible configuration. 
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A convenient prototype configuration is provided by the basic state 

c0 = 0,  b, = constant, 70 = 0 (4.10) 

and the interior of a sphere. This state is admissible for k > 2,  can be changed con- 
tinuously to admissible states for k = 2, and is disjoint from admissible states for 
k = 1. Accordingly, only modes with k 2 2 can be derived from this particular proto- 
type by the process just described. 

We now need to know the directions of zonal propagation in the prototype. As we 
have already noted, the eigenvalue problem (with aU/at neglected) for perturbations 
U, of the basic state (4.10) is equivalent to the eigenvalue problem (with aU,,/at 
retained) for perturbations U,, = ulp e W - W  of a homogeneous non-magnetic fluid 
(PoincarB 1910). The non-dimensional eigenfrequencies h = - u,/Q in PoincarB’s 
problem for a sphere are determined by 

(nh + 2k)  ~ k ( $ h )  = 2 ( n  + k) Pk-l (&I), (4.11) 

where n is any integer greater than or equal to k+ 1 and P; denotes the associated 
Legendre function of degree n and order k (cf. Greenspan 1968, p. 64). The roots h are 
real and lie between -t 2. Correspondingly, the Alfvkn waves for the prototype are 
neutrally stable. As regards their speed, Malkus (1967) showed that 

(4.12) (b,2(k+2) (k- 1)/2p0p,R for n = k+ 1,  

A few values of c, for the lower-order AlfvBn waves, determined from (3.3) and (4.1 1)- 
(4.13), are given in table 2. If n is large, k is fixed and both n8 and n(n-8) are large, 
0 < 0 < IT, then 

(4.14) 
- (n+$)(sin[(n-*)B+ln] +(k2-~)(2n~inB)-1cos[(n+~)e+Zn]+O(n-~))  

(n + k) (sin [(n + i) 8 + ZIT] + (k2 - 2) ( 2 n  sin e)-l cos[(n + 8) e + Z I T ]  + O(n-2))’ 
- 

where 1 = #(2k+ 1 ) I T  

(ErdBlyi et al. 1953, p. 147), and (3.3) and (4.11) yield 

(4.15) 

h = 2 ~ 0 ~ 8 ,  cR = b;(ksec8,-2)/2pp0R, (4.16) 

where 

v = # ( 4 N - 2 k +  1 ) ~  (4.18) 

and N is an arbitrary integer. When n8 or n(n - 0)  is not large, a different asymptotic 
approximation to Pk-, (cosB)/P;(cosO) is appropriate (ErdBlyi et al. 1953, p. 147), 
and instead of (4.17) and (4.18) we get, after some algebra, 

(4.19) no = A,( 1 - 1/2n)  + O(n-2), n(n- 0)  = ps( 1 - 1/2n) + O(n-2), 

where As and ps are the sth positive roots of the respective equations 

h8J;(hs) = - kJk(hs), psJ;(ps) = ICJk@’s)* (4.20) 
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2 x 3 4 5 

1 1 -0.1766 - 0 8200 - 1.1834 
1*5100 0.6122 - 0.0682 

1.7080 1.0456 
1.8060 

2 0.6666 - 0.2320 - 0.7634 
1.2320 0.4670 

1.4964 

3 0.5 - 0 2532 
1.0532 

4 0.4 

TABLE 1.  Values of the eigenfrequencies A = - ~ $ 2  for PoincarB's 
problem for a sphere determined from (4.11). 

2 x 3 4 5 

1 0 - 0.663 - 2.220 - 1.845 
- 0.338 0.633 - 15.66 

- 0.415 - 0.044 
- 0.466 

2 2 - 9.621 - 3.620 
0.623 3.283 

0.337 

3 5 - 12.85 

4 9 

1.85 

TABLE 2. Values of the phase speed C2popOcR/bi = klA - 1. 

A few values of h and of cR for the lower-order modes, computed from (3.3) and (4.11), 
are listed in tables 1 and 2. For a given n and k, each table contains m = n - k modes. 
Of these half, or more precisely, 

8m, m even, 
[iml = ( t ( m +  i), m odd, 

(4.21) 

have positive A. These features extend to all k and n. To see this, we note that the 
zeros x,,., r = 1,2, . . . , n - k, IX,,.~ < 1, of P:(x) interlace with the zeros x ~ - ~ ,  of P:-,(x) 
and that the identity 

= 2nS2 ~:-,(x) pk(x) c~x, x,, < x < x,r+l, (4.22) 

implies that the ratio Pt-l(x)/(P;(x) is monotonic decreasing between the successive 
zeros x,, and x,,,,. Also P$( - x) = ( - l)k+"Pk,(~). Thus the graph of y = P:-,(x)/P:(x) 
is like that of - tan x for even k + n and like that of cot x for odd k + n. In  either case, 

zn - IT 
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Thus there it intersects the line y = (nx + k) / (n  + k) just once between x,, and 
are m - 1 = n - k - 1 roots h of (4.11) between 2xn1 and 2X,k-n, of which [&n] - 1 are 
positive. At x = 1, 

Pt-,(x)/P:(z) = k (n - k) / (n  + k). (4.23) 

Consequently there is also a root of (4.11) for which 2 ~ , , - ~  < h < 2. The single root 
h = - 2 less than 2xTL1 corresponds to solutions in which the reduced pressure is given by 

rIp = r k ( 1  +z)-k or rk(l - z ) - ~ .  (4.24) 

However, these two solutions are singular at  z = T 1 respectively and are not accept- 
able as modes. This leaves m = n - k modes for given n and k, of which [ im ]  have 
positive values of A. The same holds for the Alfvh waves when k 2 2. That is, for 
given n and k there are m = n- k Alfv6n modes, of which [ im]  travel eastwards for 
k 2 2. 

Provided that these modes deform continuously, their phase velocities cR retain 
their signs. Malkus's (1967) conclusionsfor a sphere, with b, = constant and [, = ro = 0, 
are thereby extended to a wider class of regions V and basic states. To the nearest 
integer, half of the admissible modes with a given zonal wavenumber k 2 2 that derive 
from modes in the prototype with a given n travel eastwards and half travel westwards. 
The shelloidal modes (with n = k+ 1) ,  which propagate eastwards, are seen to be 
atypical not only of the modes in a sphere but also of the family of admissible modes 
as a whole. 

We turn next to the question of stability. The imaginary part of (4.1) yields 

Im(u) /  Imuvd7 = 0. (4.25) 
V 

If the integral (J = Jv Im uBdr) were zero, wR would drop out of the real part of (4.1). 

The latter possibility is precluded by conditions (4.8) and (4.9), as we have already 
seen. When these conditions apply, J must be non-zero and I m u  must vanish. 
Accordingly, all the admissible Alfvdn waves whose propagation speeds we have been 
discussing are neutrally stable. They are also, perforce, governed by equations which 
are hyperbolic in part, at  least, of V .  

For the purpose of establishing neutral stability, condition (4.9) is unduly restrictive. 
Relative to a new frame with angular velocity S2 + Q'Z, where Q' is an arbitrary 
constant very much less than R, the equations of motion have the same form as 
before and the zonal velocity in the basic state is r([ ,-  R') (i.e. [, is changed to 
C0- a'). Hence, instead of requiring (4.9) it suffices to require that 

k2bg > 4b;' Bt2 + rh, - /3r, sin B(k2bg + zh,) Agl, (4.26) 

where B,* denotes the magnitude of the maximum deviation of b: -popo R[, from its 
mean value. Thus conditions (4.8) and (4.26) suffice to imply neutral stability and 
they also imply that the modal equations are hyperbolic at least somewhere in V .  

Lastly, it should be noted that a preference for westward drift could still exist 
among the modes that have been excluded from the above discussion. A contrived 
example of this arises from imposing a uniform westward angular velocity (< R) on 
the basic flow. If the angular velocity is large enough it leads to a bias towards west- 
ward drift; but it leads simultaneously to a breach of (4.9). Modes with wavenumber 
k = 1 have been excluded, and it might be noted that, of the ten lower-order modes 
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with k = 1 and n < 5 for a sphere with f = 0, b, = constant and 70 = 0, eight travel 
westwards and only one travels eastwards (table 2). It is conceivable that some of the 
admissible modes do not deform continuously and that some modes are lost by virtue 
of v becoming infinite. These matters require further study. The ambivalence in drift 
direction noted above applies to the extent that neither of these contingencies arises. 
There remains too the possibility that the unstable modes tend to drift westwards. 
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